DYNLL2 dynein light chain binds to an extended linear motif of myosin 5a tail that has structural plasticity.

نویسندگان

  • Andrea Bodor
  • László Radnai
  • Csaba Hetényi
  • Péter Rapali
  • András Láng
  • Katalin E Kövér
  • András Perczel
  • Weixiao Y Wahlgren
  • Gergely Katona
  • László Nyitray
چکیده

LC8 dynein light chains (DYNLL) are conserved homodimeric eukaryotic hub proteins that participate in diverse cellular processes. Among the binding partners of DYNLL2, myosin 5a (myo5a) is a motor protein involved in cargo transport. Here we provide a profound characterization of the DYNLL2 binding motif of myo5a in free and DYNLL2-bound form by using nuclear magnetic resonance spectroscopy, X-ray crystallography, and molecular dynamics simulations. In the free form, the DYNLL2 binding region, located in an intrinsically disordered domain of the myo5a tail, has a nascent helical character. The motif becomes structured and folds into a β-strand upon binding to DYNLL2. Despite differences of the myo5a sequence from the consensus binding motif, one peptide is accommodated in each of the parallel DYNLL2 binding grooves, as for all other known partners. Interestingly, while the core motif shows a similar interaction pattern in the binding groove as seen in other complexes, the flanking residues make several additional contacts, thereby lengthening the binding motif. The N-terminal extension folds back and partially blocks the free edge of the β-sheet formed by the binding motif itself. The C-terminal extension contacts the dimer interface and interacts with symmetry-related residues of the second myo5a peptide. The involvement of flanking residues of the core binding site of myo5a could modify the quaternary structure of the full-length myo5a and affect its biological functions. Our results deepen the knowledge of the diverse partner recognition of DYNLL proteins and provide an example of a Janus-faced linear motif.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of dynein light chains 1 and 2 and their pro-apoptotic ligands.

The dynein and myosin V motor complexes are multi-protein structures that function to transport molecules and organelles within the cell. DLC (dynein light-chain) proteins, found as components of both dynein and myosin V motor complexes, connect the complexes to their cargoes. One of the roles of these motor complexes is to selectively sequester the pro-apoptotic 'BH3-only' (Bcl-2 homology 3-on...

متن کامل

Calmodulin bound to the first IQ motif is responsible for calcium-dependent regulation of myosin 5a.

Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca(2+)-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca(2+) and that calmodulin (CaM) binds to IQ motifs of the myosin...

متن کامل

Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein.

NMDA receptors interact directly with postsynaptic density-95 (PSD-95), a scaffold protein that organizes a cytoskeletal- signaling complex at the postsynaptic membrane. The molecular mechanism by which the PSD-95-based protein complex is trafficked to the postsynaptic site is unknown but presumably involves specific motor proteins. Here we demonstrate a direct interaction between the PSD-95-as...

متن کامل

The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN.

Class V myosins are a ubiquitously expressed family of actin-based molecular motors. Biochemical studies on myosin-Va from chick brain indicate that this myosin is a two-headed motor with multiple calmodulin light chains associated with the regulatory or neck domain of each heavy chain, a feature consistent with the regulatory effects of Ca(2+) on this myosin. In this study, the identity of thr...

متن کامل

Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor.

The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca2+-dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca2+-dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 53 45  شماره 

صفحات  -

تاریخ انتشار 2014